Which one of the following complex ions has geometrical isomers?
Option 1: \(\left[\text{Co}(\text{Cl})_2(\text{en})_2\right]^+\)
Option 2: \(\left[\text{Cr}(\text{NH}_3)_4(\text{en})\right]^{3+}\)
Option 3: \(\left[\text{Co}(\text{en})_3\right]^{3+}\)
Option 4: \(\left[\text{Ni}(\text{NH}_3)_5\right]\text{Br}\)
Given are two statements regarding the properties of carbon in Group 14 of the periodic table:
Statement-I: Carbon has the highest catenation power in group 14 elements.
Statement-II: Carbon has small size and high electronegativity compared to other elements of group 14.
Find \( \frac{dy}{dx} \) for the given function:
\[ y = \tan^{-1} \left( \frac{\sin^3(2x) - 3x^2 \sin(2x)}{3x \sin(2x) - x^3} \right). \]
The length of the normal drawn at \( t = \frac{\pi}{4} \) on the curve \( x = 2(\cos 2t + t \sin 2t) \), \( y = 4(\sin 2t + t \cos 2t) \) is:
If water is poured into a cylindrical tank of radius 3.5 ft at the rate of 1 cubic ft/min, then the rate at which the level of the water in the tank increases (in ft/min) is:
The function \( y = 2x^3 - 8x^2 + 10x - 4 \) is defined on \([1,2]\). If the tangent drawn at a point \( (a,b) \) on the graph of this function is parallel to the X-axis and \( a \in (1,2) \), then \( a = \) ?