




In the first step, the reaction of bromobenzene (\( C_6H_5Br \)) with methyl bromide (\( CH_3Br \)) in the presence of alcoholic NaOH undergoes a nucleophilic substitution to form B, which is ortho-bromophenol.
In the second step, treating ortho-bromophenol with \( \text{HBr} \) in ether leads to the formation of C, which is para-bromophenol.
Compound A (bromobenzene) and compound C (para-bromophenol) are position isomers because they differ in the position of the bromine and hydroxyl groups on the benzene ring.
The structures of B and C are as shown in Option (3), and A and C are position isomers.
p–bromobenzyl bromide
When treated with alcoholic NaOH, a dehydrohalogenation (elimination) reaction takes place, forming a double bond between the α–carbon and the benzene ring.p–bromostyrene
(Structure: a benzene ring with Br at the para position and a CH=CH₂ side group).1–bromo–2–(p–bromophenyl)ethane
(Structure: a benzene ring with Br at para position and CHBr–CH₃ side chain).(B): p–bromostyrene
(C): 1–bromo–2–(p–bromophenyl)ethane
Relationship: (A) and (C) are position isomers.


Electricity is passed through an acidic solution of Cu$^{2+}$ till all the Cu$^{2+}$ was exhausted, leading to the deposition of 300 mg of Cu metal. However, a current of 600 mA was continued to pass through the same solution for another 28 minutes by keeping the total volume of the solution fixed at 200 mL. The total volume of oxygen evolved at STP during the entire process is ___ mL. (Nearest integer)
Given:
$\mathrm{Cu^{2+} + 2e^- \rightarrow Cu(s)}$
$\mathrm{O_2 + 4H^+ + 4e^- \rightarrow 2H_2O}$
Faraday constant = 96500 C mol$^{-1}$
Molar volume at STP = 22.4 L
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 