The given reaction is a Wolff-Kishner reduction, which is used to reduce carbonyl groups (aldehydes and ketones) to alkanes.
The first step involves the formation of a hydrazone derivative: \[ \text{CH}_3 - \text{CO} - \text{CH}_2 - \text{CH}_3 \xrightarrow{\text{N}_2\text{H}_4} \text{CH}_3 - \text{C}(\text{NHNH}_2) - \text{CH}_2 - \text{CH}_3. \]
In the presence of ethylene glycol and KOH, the hydrazone undergoes decomposition to form: \[ \text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3. \]
Thus, the product 'A' is butane.
Ethanal to But-2-enal
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32