Solution: The heating process involves several stages:
Heating Ice from -10°C to 0°C: The temperature increases until it reaches 0°C.
Melting Ice at 0°C: The temperature remains constant while the ice melts into water, represented as a plateau on the graph.
Heating Water from 0°C to 100°C: The temperature of the water increases until it reaches 100°C.
Boiling Water at 100°C: The temperature remains constant as the water turns into steam, represented as another plateau on the graph.
Heating Steam from 100°C Onward: The temperature of the steam increases.
The correct graph will show:
Three conductors of same length having thermal conductivity \(k_1\), \(k_2\), and \(k_3\) are connected as shown in figure. Area of cross sections of 1st and 2nd conductor are same and for 3rd conductor it is double of the 1st conductor. The temperatures are given in the figure. In steady state condition, the value of θ is ________ °C. (Given: \(k_1\) = 60 Js⁻¹m⁻¹K⁻¹,\(k_2\) = 120 Js⁻¹m⁻¹K⁻¹, \(k_3\) = 135 Js⁻¹m⁻¹K⁻¹)
If 1 mM solution of ethylamine produces pH = 9, then the ionization constant (\(K_b\)) of ethylamine is \(10^{-x}\).
The value of x is (nearest integer).
The degree of ionization of ethylamine can be neglected with respect to unity.
During "S" estimation, 160 mg of an organic compound gives 466 mg of barium sulphate. The percentage of Sulphur in the given compound is %.
(Given molar mass in g mol\(^{-1}\) of Ba: 137, S: 32, O: 16)
Which among the following react with Hinsberg's reagent?
Choose the correct answer from the options given below:
If \(\int e^x \left( \frac{x \sin^{-1} x}{\sqrt{1-x^2}} + \frac{\sin^{-1} x}{(1-x^2)^{3/2}} + \frac{x}{1-x^2} \right) dx = g(x) + C\), where C is the constant of integration, then \(g\left( \frac{1}{2} \right)\)equals:
Match the LIST-I with LIST-II:
Choose the correct answer from the options given below :
It is defined as the movement of heat across the border of the system due to a difference in temperature between system and its surroundings.
Heat can travel from one place to another in several ways. The different modes of heat transfer include: