We use the inclusion-exclusion principle. Let \( N = 100 \)
Divisible by:
- 2: \( \left\lfloor \frac{100}{2} \right\rfloor = 50 \)
- 3: \( \left\lfloor \frac{100}{3} \right\rfloor = 33 \)
- 5: \( \left\lfloor \frac{100}{5} \right\rfloor = 20 \)
Pairs:
- 2 and 3: \( \left\lfloor \frac{100}{6} \right\rfloor = 16 \)
- 2 and 5: \( \left\lfloor \frac{100}{10} \right\rfloor = 10 \)
- 3 and 5: \( \left\lfloor \frac{100}{15} \right\rfloor = 6 \)
Triple:
- 2,3,5: \( \left\lfloor \frac{100}{30} \right\rfloor = 3 \)
Now use Inclusion-Exclusion:
\[
n = 50 + 33 + 20 - 16 - 10 - 6 + 3 = 74
\]
So, numbers not divisible by 2, 3 or 5:
\[
100 - 74 = \boxed{26}
\]