Let N be the number of nuclei at the beginning. Number of undecayed nuclei after 33% decay = 0.67 N
Number of undecayed nuclei after 67% decay = 0.33 N
Also 0.33 $N_{0}\approx\frac{0.67N_{0}}{2}$ And in one half life the number of undecayed nuclei becomes half.
Exact calculation :
Let number of nucler at the beginning = N
Let the time required for 33% decay = t
Then 0.67 N = N $e^{-\lambda t_{1}}$
$\Rightarrow e^{-\lambda t_{1}} =0.67 $ ...................(1)
Time required for 67% decay = t
$\therefore e^{-\lambda t_{1}} $ = 0.33 ...................(2)
[Since after 33% decay, 67% will remain and after 67% decay, 33% will remain].
$\therefore\left(2\right)\div\left(1\right) \Rightarrow e^{-\lambda\left(t_{2-t_1}\right)}=\frac{0.33}{0.67}=\frac{1}{2}$
$\therefore-\lambda\left(t_{2}-t_{1}\right)=in\left(\frac{1}{2}\right)$
$\therefore-\lambda\left(t_{2}-t_{1}\right)=\frac{in\left(\frac{1}{2}\right)}{\lambda}=-\frac{in\left(\frac{1}{2}\right)\times T_{??}{0.693}$
$=- \frac{in\left(\frac{1}{2}\right)\times20}{-in\left(\frac{1}{2}\right)}=20$ minutes