Step 1: Compute \( \vec{BA} = \vec{A} - \vec{B} \) \[ \vec{BA} = (1 - (-1),\ 2 - (-2),\ 5 - (-3)) = (2, 4, 8) = 2\hat{i} + 4\hat{j} + 8\hat{k} \] Step 2: Cross product \( \vec{BA} \times \vec{F} \) \[ \vec{F} = 2\hat{i} + 2\hat{j} + 5\hat{k} \] Use determinant form: \[ \vec{BA} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\2 & 4 & 8 \\ 2 & 2 & 5 \end{vmatrix} = \hat{i}(4 \cdot 5 - 8 \cdot 2) - \hat{j}(2 \cdot 5 - 8 \cdot 2) + \hat{k}(2 \cdot 2 - 4 \cdot 2) \] \[ = \hat{i}(20 - 16) - \hat{j}(10 - 16) + \hat{k}(4 - 8) = 4\hat{i} + 6\hat{j} -4\hat{k} \] Compare with: \[ 4\hat{i} + 6\hat{j} + 2\lambda \hat{k} \Rightarrow 2\lambda = -4 \Rightarrow \boxed{\lambda = -2} \]
Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals: