Given the function:
\[ f(x) = \begin{cases} \frac{2x e^{1/2x} - 3x e^{-1/2x}}{e^{1/2x} + 4e^{-1/2x}}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \]
Determine the differentiability of \( f(x) \) at \( x = 0 \).
An inductor and a resistor are connected in series to an AC source of voltage \( 144\sin(100\pi t + \frac{\pi}{2}) \) volts. If the current in the circuit is \( 6\sin(100\pi t + \frac{\pi}{2}) \) amperes, then the resistance of the resistor is: