Step 1: Evaluate the limit w.r.t. \(\theta\)
Consider the factor \(x^{2/\theta}\) as \(\theta\to 0\). \[ x^{2/\theta}= \begin{cases} 0, & |x|<1\\ \infty, & |x|>1\\ 1, & |x|=1 \end{cases} \] Case I: \(|x|<1\)
Then \(x^{2/\theta}\to 0\), so \[ f(x)=\frac{\cos(\pi x)}{1}=\cos(\pi x) \] Case II: \(|x|>1\)
Then \(x^{2/\theta}\to \infty\). Dividing numerator and denominator by \(x^{2/\theta}\), \[ f(x)=\frac{-\sin(x-1)}{-(x-1)}=\frac{\sin(x-1)}{x-1} \] Case III: \(x=1\)
\[ f(1)=\lim_{\theta\to 0}\frac{\cos\pi-1^{2/\theta}\sin 0}{1-1^{2/\theta}\cdot 0} =\frac{-1}{1}=-1 \] Left-hand limit at \(x=1\): \[ \lim_{x\to1^-}\cos(\pi x)=\cos\pi=-1 \] Right-hand limit at \(x=1\): \[ \lim_{x\to1^+}\frac{\sin(x-1)}{x-1}=1 \] Since LHL \(\neq\) RHL, \[ f(x)\ \text{is discontinuous at } x=1 \] Hence, Statement 1 is false
. Case IV: \(x=-1\)
Here \(|x|=1\Rightarrow x^{2/\theta}=1\). \[ f(-1)=\frac{\cos(-\pi)-\sin(-2)}{1-(-2)} =\frac{-1+\sin2}{3} \] Left and right limits are same (finite), hence \(f(x)\) is continuous at \(x=-1\)
. But since the functional form changes across \(|x|=1\), the limit definition fails to match smoothly. Thus, Statement 2 is also false
.
Final Conclusion:
Both statements are false. \[ \boxed{\text{Option (2)}} \]
Let $ \mathbb{R} $ denote the set of all real numbers. Define the function $ f: \mathbb{R} \to \mathbb{R} $ by $$ f(x) = \begin{cases} 2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right), & \text{if } x \ne 0, \\ 2, & \text{if } x = 0. \end{cases} $$ Then which one of the following statements is TRUE?
Match List-I with List-II
| List-I | List-II |
|---|---|
| (A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
| (B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
| (C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
| (D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
