Given the function:
\[ f(x) = \begin{cases} \frac{(2x^2 - ax +1) - (ax^2 + 3bx + 2)}{x+1}, & \text{if } x \neq -1 \\ k, & \text{if } x = -1 \end{cases} \]
If \( a, b, k \in \mathbb{R} \) and \( f(x) \) is continuous for all \( x \), then the value of \( k \) is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: