Given that dy/dx = yex such that x = 0, y = e. The value of y(y > 0) when x = 1 will be
e
1/e
ee
e2
The correct answer is option C) ee
Given that dy/dx = yex
such that x = 0, y = e.
The value of y(y > 0) when x = 1 will be
dy/y = exdx
⇒ ln y = ex + c
At x = 0, y = e.
So, c = 0. ln y = ex
Therefore, at x = 1, y = ee.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Which of the following statement is true with respect to H\(_2\)O, NH\(_3\) and CH\(_4\)?
(A) The central atoms of all the molecules are sp\(^3\) hybridized.
(B) The H–O–H, H–N–H and H–C–H angles in the above molecules are 104.5°, 107.5° and 109.5° respectively.
(C) The increasing order of dipole moment is CH\(_4\)<NH\(_3\)<H\(_2\)O.
(D) Both H\(_2\)O and NH\(_3\) are Lewis acids and CH\(_4\) is a Lewis base.
(E) A solution of NH\(_3\) in H\(_2\)O is basic. In this solution NH\(_3\) and H\(_2\)O act as Lowry-Bronsted acid and base respectively.
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?