Given that dy/dx = yex such that x = 0, y = e. The value of y(y > 0) when x = 1 will be
e
1/e
ee
e2
To solve the given differential equation and find the value of \( y \) when \( x = 1 \), we proceed as follows:
The correct answer is ee.
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.