Step 1: Understand the function definition
The function \( f(x) \) is defined piecewise as:
\[
f(x) = \begin{cases}
\frac{1}{2}(b^2 - a^2), & 0 \le x \le a \\[6pt]
\frac{1}{2}b^2 - \frac{x^2}{6} - \frac{a^3}{3x}, & a < x \le b \\[6pt]
\frac{1}{3} \cdot \frac{b^3 - a^3}{x}, & x > b
\end{cases}
\]
Step 2: Check continuity at \(x=a\)
From left side \(x \to a^-\), \( f(x) = \frac{1}{2}(b^2 - a^2) \) (constant).
From right side \(x \to a^+\), substitute \(x=a\) in second piece:
\[
f(a^+) = \frac{1}{2}b^2 - \frac{a^2}{6} - \frac{a^3}{3a} = \frac{1}{2}b^2 - \frac{a^2}{6} - \frac{a^2}{3} = \frac{1}{2}b^2 - \frac{a^2}{2}
\]
Notice that:
\[
\frac{1}{2}(b^2 - a^2) = \frac{1}{2}b^2 - \frac{a^2}{2}
\]
So, \( f \) is continuous at \(x=a\).
Step 3: Find derivatives from left and right at \(x=a\)
- For \(x <= a\), \(f(x) = \text{constant} = \frac{1}{2}(b^2 - a^2)\), so:
\[
f'(a^-) = 0
\]
- For \(a < x \le b\),
\[
f(x) = \frac{1}{2}b^2 - \frac{x^2}{6} - \frac{a^3}{3x}
\]
Differentiate:
\[
f'(x) = -\frac{2x}{6} + \frac{a^3}{3x^2} = -\frac{x}{3} + \frac{a^3}{3x^2}
\]
At \(x=a\),
\[
f'(a^+) = -\frac{a}{3} + \frac{a^3}{3a^2} = -\frac{a}{3} + \frac{a}{3} = 0
\]
Step 4: Check differentiability at \(x=a\)
Since \(f'(a^-)=0\) and \(f'(a^+)=0\), the first derivative exists and equals zero from both sides.
Step 5: Check if \(f'(x)\) is differentiable at \(x=a\) (i.e., if second derivative exists and is continuous)
- For \(x \le a\), \(f'(x) = 0\) constant, so second derivative:
\[
f''(a^-) = 0
\]
- For \(a < x \le b\),
\[
f'(x) = -\frac{x}{3} + \frac{a^3}{3x^2}
\]
Differentiate:
\[
f''(x) = -\frac{1}{3} - \frac{2a^3}{3x^3}
\]
At \(x=a\),
\[
f''(a^+) = -\frac{1}{3} - \frac{2a^3}{3a^3} = -\frac{1}{3} - \frac{2}{3} = -1
\]
Step 6: Conclusion
Since \(f''(a^-) = 0\) but \(f''(a^+) = -1\), the second derivative is not continuous at \(x=a\).
Therefore, \(f'(x)\) is not differentiable at \(x=a\).
Final answer:
\[
\boxed{f'(x) \text{ is not differentiable at } x = a}
\]