Given \( f(x) = \begin{cases} \frac{1}{2}(b^2 - a^2), & 0 \le x \le a \\[6pt] \frac{1}{2}b^2 - \frac{x^2}{6} - \frac{a^3}{3x}, & a<x \le b \\[6pt] \frac{1}{3} \cdot \frac{b^3 - a^3}{x}, & x>b \end{cases} \). Then:
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}