We are given:
- \( y = f(f(f(x))) + (f(x))^2 \)
- \( f'(1) = 3 \)
- \( f(1) = 1 \)
Let us differentiate \( y \) with respect to \( x \):
\[
\frac{dy}{dx} = \frac{d}{dx} \left[ f(f(f(x))) \right] + \frac{d}{dx} \left[ (f(x))^2 \right]
\]
Term 1: \( f(f(f(x))) \)
Let \( u = f(x) \Rightarrow \frac{du}{dx} = f'(x) \)
Let \( v = f(u) = f(f(x)) \Rightarrow \frac{dv}{dx} = f'(f(x)) \cdot f'(x) \)
Then,
\[
\frac{d}{dx} [f(f(f(x)))] = f'(f(f(x))) \cdot f'(f(x)) \cdot f'(x)
\]
Term 2: \( (f(x))^2 \)
\[
\frac{d}{dx} [(f(x))^2] = 2 f(x) f'(x)
\]
Now plug in \( x = 1 \):
- \( f(1) = 1 \Rightarrow f(f(1)) = f(1) = 1 \Rightarrow f(f(f(1))) = f(1) = 1 \)
- \( f'(1) = 3 \)
So,
\[
\frac{dy}{dx} = f'(1) \cdot f'(1) \cdot f'(1) + 2 \cdot f(1) \cdot f'(1) = 3 \cdot 3 \cdot 3 + 2 \cdot 1 \cdot 3 = 27 + 6 = 33
\]
Correction! Let’s double-check.
Since:
\[
f(f(f(x))) \text{ derivative } = f'(f(f(x))) \cdot f'(f(x)) \cdot f'(x)
\]
At \( x = 1 \):
- \( f(1) = 1 \Rightarrow f(f(1)) = f(1) = 1 \Rightarrow f(f(f(1))) = f(1) = 1 \)
- So all inner function values are 1
Thus,
\[
f'(f(f(1))) = f'(1),\quad f'(f(1)) = f'(1),\quad f'(1) = 3
\Rightarrow f'(f(f(x))) \cdot f'(f(x)) \cdot f'(x) = 3 \cdot 3 \cdot 3 = 27
\]
Now:
\[
\frac{dy}{dx} = 27 + 2 \cdot f(1) \cdot f'(1) = 27 + 2 \cdot 1 \cdot 3 = 27 + 6 = \boxed{33}
\]
So the final correct answer is:
\[
\boxed{33}
\]
Correct Answer: (None from given options, actual answer is 33)