Step 1: Analyze Statement I The rate law is:
\[ r = k[A]^2[B]. \]
When the concentrations of \(A\) and \(B\) are doubled:
\[ r' = k[2A]^2[2B] = k(2^2)[A]^2(2)[B]. \]
\[ r' = 8k[A]^2[B]. \]
Thus, \(r' = 8r\), so \(x = 8\).
Step 2: Analyze Statement II From the figure, the concentration decreases linearly with time. A linear decrease in concentration indicates a zero-order reaction (\(y = 0\)).
Final Step: Calculate \(x + y\)
\[ x + y = 8 + 0 = 8. \]
Final Answer: 8.
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)