Step 1: Analyze Statement I The rate law is:
\[ r = k[A]^2[B]. \]
When the concentrations of \(A\) and \(B\) are doubled:
\[ r' = k[2A]^2[2B] = k(2^2)[A]^2(2)[B]. \]
\[ r' = 8k[A]^2[B]. \]
Thus, \(r' = 8r\), so \(x = 8\).
Step 2: Analyze Statement II From the figure, the concentration decreases linearly with time. A linear decrease in concentration indicates a zero-order reaction (\(y = 0\)).
Final Step: Calculate \(x + y\)
\[ x + y = 8 + 0 = 8. \]
Final Answer: 8.
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32