Step 1: Analyze Statement I The rate law is:
\[ r = k[A]^2[B]. \]
When the concentrations of \(A\) and \(B\) are doubled:
\[ r' = k[2A]^2[2B] = k(2^2)[A]^2(2)[B]. \]
\[ r' = 8k[A]^2[B]. \]
Thus, \(r' = 8r\), so \(x = 8\).
Step 2: Analyze Statement II From the figure, the concentration decreases linearly with time. A linear decrease in concentration indicates a zero-order reaction (\(y = 0\)).
Final Step: Calculate \(x + y\)
\[ x + y = 8 + 0 = 8. \]
Final Answer: 8.
A first-order reaction is 25% complete in 30 minutes. How much time will it take for the reaction to be 75% complete?
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)