The compound \([ \text{Ni}(\text{H}_2\text{O})_6 ]^{2+}\) appears green due to d-d transitions in the visible spectrum.
\([ \text{Ni}(\text{CN})_4 ]^{2-}\) is diamagnetic and does not exhibit any d-d transitions, rendering it colourless.
Thus, the correct answer is option 2.
Match the LIST-I with LIST-II
Choose the correct answer from the options given below:
Given below are two statements:
Statement I: A homoleptic octahedral complex, formed using monodentate ligands, will not show stereoisomerism
Statement II: cis- and trans-platin are heteroleptic complexes of Pd.
In the light of the above statements, choose the correct answer from the options given below
Identify the coordination complexes in which the central metal ion has a \(d^4\) configuration.

Choose the correct answer from the options given below :
Identify the diamagnetic octahedral complex ions from below ;
A. [Mn(CN)\(_6\)]\(^{3-}\)
B. [Co(NH\(_3\))\(_6\)]\(^{3+}\)
C. [Fe(CN)\(_6\)]\(^{4-}\)
D. [Co(H\(_2\)O)\(_3\)F\(_3\)]
Choose the correct answer from the options given below :
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is: