Given below are the quantum numbers for 4 electrons.
A. n=3, l=2, ml=1,ms=+\(\frac{1}{2}\)
B. n=4, l=1, ml=0,ms=+\(\frac{1}{2}\)
C. n=4, l=2, ml=–2,ms=–\(\frac{1}{2}\)
D. n=3, l=1, ml=–1,ms=+\(\frac{1}{2}\)
The correct order of increasing energy is
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: