Question:

Given \( A = |x+3 + |x-2| - |2x-8| \). The maximum value of \( |A| \) is : 

Updated On: Aug 21, 2025
  • 111
  • 9
  • 6
  • 3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We want to find the maximum value of \(|A|\). For this, we analyze each absolute value term separately. 

Step 1: Break down each absolute value expression. 

  • \(|x+3|\): \[ |x+3| = \begin{cases} x + 3, & x \geq -3 \\ -x - 3, & x < -3 \end{cases} \]
  • \(|x-2|\): \[ |x-2| = \begin{cases} x - 2, & x \geq 2 \\ -x + 2, & x < 2 \end{cases} \]
  • \(-|2x-8|\): \[ -|2x-8| = \begin{cases} -(2x - 8), & x \leq 4 \\ (2x - 8), & x > 4 \end{cases} \]

Step 2: Analyze different ranges of \(x\).

Case 1: \(x \geq 4\)

\[ A = (x+3) + (x-2) - (2x - 8) = 7 \]

Case 2: \(2 \leq x < 4\)

\[ A = (x+3) + (x-2) - (-2x + 8) = 4x - 7 \]

Case 3: \(-3 \leq x < 2\)

\[ A = (x+3) - (x-2) - (-2x + 8) = 2x - 3 \]

Case 4: \(x < -3\)

\[ A = (-x - 3) + (-x + 2) - (-2x + 8) = -9 \]

Step 3: Evaluate maximum absolute value.

  • Case 1: \(A = 7 \implies |A| = 7\)
  • Case 2: \(A = 4x - 7\). At \(x = 2 \implies A = 1\), at \(x = 4 \implies A = 9\). So maximum is 9.
  • Case 3: \(A = 2x - 3\). At \(x = -3 \implies A = -9\), at \(x = 2 \implies A = 1\). So maximum absolute value is 9.
  • Case 4: \(A = -9 \implies |A| = 9\)

Step 4: Conclusion

\[ \max |A| = 9 \]

Final Answer:

Option B is the correct answer.

Was this answer helpful?
0
0