Let the height of the bridge be \( h \) metres and the width of the river be \( k \) metres.
From the geometry of the situation, for the first angle of depression (\(30^\circ\)), we can use the tangent function:
\[
\tan(30^\circ) = \frac{h}{k_1} \quad \Rightarrow \quad k_1 = \frac{h}{\tan(30^\circ)} = \frac{h}{\frac{1}{\sqrt{3}}} = h\sqrt{3}
\]
For the second angle of depression (\(60^\circ\)):
\[
\tan(60^\circ) = \frac{h}{k_2} \quad \Rightarrow \quad k_2 = \frac{h}{\tan(60^\circ)} = \frac{h}{\sqrt{3}} = \frac{h}{\sqrt{3}}
\]
Thus, the ratio \( h : k \) is:
\[
h : k = 1 : 2\sqrt{3}
\]
Therefore, the correct answer is \( 1 : 2\sqrt{3} \).