The probability distribution of a random variable \( X \) is given below:
| \( X \) | 1 | 2 | 4 | 2k | 3k | 5k |
|---|---|---|---|---|---|---|
| \( P(X) \) | \( \frac{1}{2} \) | \( \frac{1}{5} \) | \( \frac{3}{25} \) | \( \frac{1}{10} \) | \( \frac{1}{25} \) | \( \frac{1}{25} \) |
Expected value \( E(X) = 2.94 \)
\[ E(X) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{5} + 4 \cdot \frac{3}{25} + (2k) \cdot \frac{1}{10} + (3k) \cdot \frac{1}{25} + (5k) \cdot \frac{1}{25} \]
Constants:
\[ 1 \cdot \frac{1}{2} = \frac{1}{2},\quad 2 \cdot \frac{1}{5} = \frac{2}{5},\quad 4 \cdot \frac{3}{25} = \frac{12}{25} \]
Convert to denominator 50:
\[ \frac{1}{2} = \frac{25}{50},\quad \frac{2}{5} = \frac{20}{50},\quad \frac{12}{25} = \frac{24}{50} \Rightarrow \text{Sum} = \frac{25 + 20 + 24}{50} = \frac{69}{50} \]
Variable terms:
\[ \frac{2k}{10} = \frac{k}{5} = \frac{10k}{50},\quad \frac{3k}{25} + \frac{5k}{25} = \frac{8k}{25} = \frac{16k}{50} \Rightarrow \text{Total variable part} = \frac{10k + 16k}{50} = \frac{26k}{50} \]
\[ E(X) = \frac{69 + 26k}{50} \]
Equating:
\[ \frac{69 + 26k}{50} = 2.94 \Rightarrow 69 + 26k = 2.94 \cdot 50 = 147 \Rightarrow 26k = 147 - 69 = 78 \Rightarrow k = \frac{78}{26} = \boxed{3} \]
Values of \( X \leq 4 \) are: 1, 2, 4
\[ P(X \leq 4) = \frac{1}{2} + \frac{1}{5} + \frac{3}{25} = \frac{25}{50} + \frac{10}{50} + \frac{6}{50} = \frac{41}{50} \]
Three distinct numbers are selected randomly from the set \( \{1, 2, 3, \dots, 40\} \). If the probability, that the selected numbers are in an increasing G.P. is \( \frac{m}{n} \), where \( \gcd(m, n) = 1 \), then \( m + n \) is equal to:
A board has 16 squares as shown in the figure. Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is:
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]