Given four masses \( m \) are placed at the corners of a square with side \( a \). The net gravitational force on one mass due to the other three masses is given by:
\[ F_{\text{net}} = \sqrt{2}F + F' \]
Where:
\[ F = \frac{Gm^2}{a^2}, \quad F' = \frac{Gm^2}{(\sqrt{2}a)^2} \]
Substituting values:
\[ F_{\text{net}} = \sqrt{2}\frac{Gm^2}{a^2} + \frac{Gm^2}{2a^2} \]
Equating:
\[ \left( \frac{2\sqrt{2} + 1}{32} \right) \frac{Gm^2}{L^2} = \frac{Gm^2}{a^2} \left( \frac{2\sqrt{2} + 1}{2} \right) \]
Solving gives:
\[ a = 4L \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: