\(3x^2 – 4|x^2 – 1| + x – 1 = 0\)
Let \(x ∈ [-1, 1]\)
\(⇒\) \(3x^2 – 4(-x^2+1) + x – 1 = 0\)
\(⇒\) \(3x^2 + 4x^2 – 4 + x – 1 = 0\)
\(⇒ \)\(7x^2 + x – 5 = 0\)
\(⇒\) \(x = -1±\frac{\sqrt{(1+140)}}{2}\)
Both values are acceptable.
Let\( x ∈ (-∞, -1) ⋃ (1, ∞)\)
\(x^2-4(x^2-1)+x-1 = 0\)
\(⇒\) \(x^2-x-3 = 0\)
\(⇒\) \(x = 1±\frac{\sqrt{(1+12)}}{2}\)
Again both are acceptable.
Hence, total number of solution = 4.
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).
A positive, singly ionized atom of mass number $ A_M $ is accelerated from rest by the voltage $ 192 \, \text{V} $. Thereafter, it enters a rectangular region of width $ w $ with magnetic field $ \vec{B}_0 = 0.1\hat{k} \, \text{T} $. The ion finally hits a detector at the distance $ x $ below its starting trajectory. Which of the following option(s) is(are) correct?
$ \text{(Given: Mass of neutron/proton = } \frac{5}{3} \times 10^{-27} \, \text{kg, charge of the electron = } 1.6 \times 10^{-19} \, \text{C).} $