Question:

Given $K_p$ for $2AO_2 + O_2 \rightleftharpoons 2AO_3$ is $4 \times 10^{10}$. Find $K_p'$ for $3AO_3 \rightleftharpoons 3AO_2 + \frac{3}{2} O_2$.

Show Hint

For $aA \rightleftharpoons bB$, $K_{rev} = 1/K$. Scaling reaction: $K_{new} = K^n$, n = factor multiplied. Keep units consistent.
Updated On: Oct 27, 2025
  • $1.25 \times 10^{-16}$
  • $1.25 \times 10^{16}$
  • $8 \times 10^{16}$
  • $8 \times 10^{-16}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

• Original reaction: $K_1 = 4 \times 10^{10}$
• Reverse reaction: $K_{rev} = 1/K_1 = 2.5 \times 10^{-11}$
• Scaling factor $n = 3/2$ of original equation: $K' = K_{rev}^{n} = (2.5 \times 10^{-11})^1.5 \approx 1.25 \times 10^{-16}$.
Was this answer helpful?
0
0

Top Questions on Law Of Chemical Equilibrium And Equilibrium Constant

View More Questions