For the matrix A=\(\begin{bmatrix}3&2\\1&1\end{bmatrix}\),find the numbers a and b such that A2+ aA+bI=O.
Let A=\(\begin{bmatrix}3&2\\1&1\end{bmatrix}\)
A2=\(\begin{bmatrix}3&2\\1&1\end{bmatrix}\)\(\begin{bmatrix}3&2\\1&1\end{bmatrix}\)=\(\begin{bmatrix}9+2&6+2\\3+1&2+1\end{bmatrix}\)
=\(\begin{bmatrix}11&8\\4&3\end{bmatrix}\)
Now, A2+aA+bI=0 [post multiplying by A-1 as IAI≠0]
\(\Rightarrow\) (AA)A-1+aAA-1+bAA-1=0
\(\Rightarrow\) A(AA-1)+aI+b(IA-1)=0
AI+aI+bA-1=0
\(\Rightarrow\) A+aI=-bA-1
\(\Rightarrow\) A-1=-\(\frac{1}{b}\)(A+aI)
Now, A-1=\(\frac{1}{\mid A\mid}\)adj A=\(\frac{1}{1}\)\(\begin{bmatrix}1&-2\\-1&3\end{bmatrix}\)
we have:
\(\begin{bmatrix}1&-2\\-1&3\end{bmatrix}\)=-\(\frac{1}{b}\)\(\bigg(\)\(\begin{bmatrix}3&2\\1&1\end{bmatrix}\)+\(\begin{bmatrix}a&0\\0&a\end{bmatrix}\)\(\bigg)\)=-\(\frac{1}{b}\)\(\begin{bmatrix}3+a&2\\1&1+a\end{bmatrix}\)=\(\begin{bmatrix}\frac{-3-a}{b}&\frac{-2][b}2\\\frac{-1}{b}&\frac{-1-a}{b}\end{bmatrix}\)
Comparing the corresponding elements of the two matrices have:
-\(\frac{1}{b}=-1\geq b=1\)
\(\frac{-3-a}{b}=1\geq -3-a=1\)
\(\Rightarrow\) a=-4
Hence, −4 and 1 are the required values of a and b respectively.
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to