The equilibrium constant for the net reaction $X \rightleftharpoons W$ is the product of the individual constants:
\[K = K_1 \cdot K_2 \cdot K_3.\]
Substitute values:
\[K = 1 \cdot 2 \cdot 4 = 8.\]
Final Answer:
8.0
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)