To determine the equilibrium constant for the overall reaction \( X \rightleftharpoons W \), we need to combine the given reactions and their respective equilibrium constants (\( K_1, K_2, \) and \( K_3 \)) in the following sequence:
Thus, the equilibrium constant for the reaction \( X \rightleftharpoons W \) is \(8.0\).
Let's evaluate the options given:
The correct answer is 8.0.
The equilibrium constant for the net reaction $X \rightleftharpoons W$ is the product of the individual constants:
\[K = K_1 \cdot K_2 \cdot K_3.\]
Substitute values:
\[K = 1 \cdot 2 \cdot 4 = 8.\]
Final Answer:
8.0
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]

For the circuit shown above, the equivalent gate is:
Find the equivalent resistance between two ends of the following circuit:
The circuit consists of three resistors, two of \(\frac{r}{3}\) in series connected in parallel with another resistor of \(r\).
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below:
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process. \text{In the light of the above statements, choose the correct answer from the options given below:}
