The differential equation of the given curve is: \(xy\frac{dy}{dx}=(x+2)(y+2)\) \(⇒(\frac{y}{y+2})dy=(\frac{x+2}{x})dx\) \(⇒(1-\frac{2}{y+2})dy=(1+\frac{2}{x})dx\) Integrating both sides,we get: \(∫(1-\frac{2}{y+2})dy=∫(1+\frac{2}{x})dx\) \(⇒∫dy-2∫\frac{1}{y}+2dy=∫dx+2∫\frac{1}{x}dx\) \(⇒y-2log(y+2)=x+2logx+C\) \(⇒y-x-C=logx^2+log(y+2)^2\) \(⇒y-x-C=log[x^2(y+2)^2]...(1)\) Now,the curve passes through (1,-1). \(⇒-1-1-C=log[(1)^2(-1+2)^2]\) \(⇒-2-C=log1=0\) \(⇒C=-2\) Substituting C=-2 in equation(1),we get: \(y-x+2=log[x^2(y+2)^2]\) This is the required solution of the given curve.