For some \( a, b \), let \( f(x) = \left| \begin{matrix} a + \frac{\sin x}{x} & 1 & b \\ a & 1 + \frac{\sin x}{x} & b \\ a & 1 & b + \frac{\sin x}{x} \end{matrix} \right| \), where \( x \neq 0 \), \( \lim_{x \to 0} f(x) = \lambda + \mu a + \nu b \).
Then \( (\lambda + \mu + \nu)^2 \) is equal to:
First, compute the determinant of the matrix as \( x \to 0 \) and then take the limit to find the value of \( \lambda + \mu + \nu \). The limit and determinant calculation gives the value 3 for \( \lambda + \mu + \nu \), so squaring this gives 9.
Final Answer: \( (\lambda + \mu + \nu)^2 = 9 \).
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
