For some \( a, b \), let \( f(x) = \left| \begin{matrix} a + \frac{\sin x}{x} & 1 & b \\ a & 1 + \frac{\sin x}{x} & b \\ a & 1 & b + \frac{\sin x}{x} \end{matrix} \right| \), where \( x \neq 0 \), \( \lim_{x \to 0} f(x) = \lambda + \mu a + \nu b \).
Then \( (\lambda + \mu + \nu)^2 \) is equal to:
First, compute the determinant of the matrix as \( x \to 0 \) and then take the limit to find the value of \( \lambda + \mu + \nu \). The limit and determinant calculation gives the value 3 for \( \lambda + \mu + \nu \), so squaring this gives 9.
Final Answer: \( (\lambda + \mu + \nu)^2 = 9 \).
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals: