For Newton’s rings, the interference condition for constructive and destructive interference is based on the thickness t of the air film and the wavelength of light. The pattern of colored rings can only be observed if the light is polychromatic, as monochromatic light will produce a simple fringe pattern without any color.
Light from a point source in air falls on a spherical glass surface (refractive index, \( \mu = 1.5 \) and radius of curvature \( R = 50 \) cm). The image is formed at a distance of 200 cm from the glass surface inside the glass. The magnitude of distance of the light source from the glass surface is 1cm.
Distance between object and its image (magnified by $-\frac{1}{3}$ ) is 30 cm. The focal length of the mirror used is $\left(\frac{\mathrm{x}}{4}\right) \mathrm{cm}$, where magnitude of value of x is _______ .
When an object is placed 40 cm away from a spherical mirror an image of magnification $\frac{1}{2}$ is produced. To obtain an image with magnification of $\frac{1}{3}$, the object is to be moved: