Question:

For \(n\ \in \N\), let
\(a_n=\frac{1}{(3n+2)(3n+4)}\) and \(b_n=\frac{n^3+\cos(3^n)}{3n+n^3}\).
Then, which one of the following is TRUE ?

Updated On: Oct 22, 2024
  • \(\sum\limits_{n=1}^{\infin}a_n\) is convergent but \(\sum\limits_{n=1}^{\infin}b_n\) is divergent
  • \(\sum\limits_{n=1}^{\infin}a_n\) is divergent but \(\sum\limits_{n=1}^{\infin}b_n\) is convergent
  • Both \(\sum\limits_{n=1}^{\infin}a_n\) and \(\sum\limits_{n=1}^{\infin}b_n\) are divergent
  • Both \(\sum\limits_{n=1}^{\infin}a_n\) and \(\sum\limits_{n=1}^{\infin}b_n\) are convergent
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct option is (D) : Both \(\sum\limits_{n=1}^{\infin}a_n\) and \(\sum\limits_{n=1}^{\infin}b_n\) are convergent.
Was this answer helpful?
1
0