
θ=45°
Taking components along x & y
F1=√2−\(\frac{1}{\sqrt2}\)=\(\frac{2-1}{\sqrt2}\)=\(\frac{1}{\sqrt2}\)
F2=√2+\(\frac{1}{\sqrt2}\)=\(\frac{2+1}{\sqrt2}\)=\(\frac{3}{\sqrt 2}\)
F1: F2=1:3
⇒x=3
A square Lamina OABC of length 10 cm is pivoted at \( O \). Forces act at Lamina as shown in figure. If Lamina remains stationary, then the magnitude of \( F \) is: 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Torque is a moment of force. Torque is measured as a force that causeque is also defined as the turning effect of force on the axis of rotation. Torque is chs an object to rotate about an axis and is responsible for the angular acceleration. Characterized with “T”.
Torque is calculated as the magnitude of the torque vector T for a torque produced by a given force F
T = F. Sin (θ)
Where,
r - length of the moment arm,
θ - the angle between the force vector and the moment arm.
Read More: Torque
Torque is of two types: