Step 1: Determine the distances from the wedge (fulcrum).
- Total length of the rod = 27 cm.
- Distance from the wedge to the 200 gm mass = 25 cm (given).
- Therefore, distance from the wedge to the unknown mass = 27 cm - 25 cm = 2 cm.
Step 2: Calculate the volume of the cube and the buoyant force when half-submerged.
- Side of the cube = 10 cm.
- Volume of the cube, \( V = 10^3 = 1000 \, \text{cm}^3 \).
- Half volume submerged, \( V_{\text{sub}} = 500 \, \text{cm}^3 \).
- Buoyant force, \( F_b = \rho_{\text{water}} \times V_{\text{sub}} \times g = 1 \, \text{gm/cm}^3 \times 500 \, \text{cm}^3 \times g = 500 \, \text{gm} \times g \).
Step 3: Set up the torque equilibrium equation about the wedge.
Let \( M \) be the unknown mass in grams.
- Torque due to the 200 gm mass: \( 200 \, \text{gm} \times g \times 25 \, \text{cm} \).
- Torque due to the unknown mass: \( (M \times g - F_b) \times 2 \, \text{cm} = (M \times g - 500 \, \text{gm} \times g) \times 2 \, \text{cm} \).
For equilibrium, the torques must balance: \[ 200 \times g \times 25 = (M \times g - 500 \times g) \times 2 \] Cancel \( g \) from both sides: \[ 200 \times 25 = (M - 500) \times 2 \] Simplify: \[ 5000 = 2M - 1000 \quad \Rightarrow \quad 2M = 6000 \quad \Rightarrow \quad M = 3000 \, \text{gm} = 3 \, \text{kg}. \]