To find the torque \( \mathbf{\tau} \) exerted by the force \( \mathbf{F} = \hat{i} - \hat{j} + \hat{k} \) on the particle at location \( \mathbf{r} = (1 \,\text{m}, 1 \,\text{m}, 1 \,\text{m}) \) with respect to the origin, we use the cross product formula for torque: \( \mathbf{\tau} = \mathbf{r} \times \mathbf{F} \).
We can express \( \mathbf{r} \) and \( \mathbf{F} \) as vectors:
\(\mathbf{r} = \hat{i} + \hat{j} + \hat{k}, \quad \mathbf{F} = \hat{i} - \hat{j} + \hat{k}\)
The cross product \(\mathbf{r} \times \mathbf{F}\) is computed using the determinant formula:
\(\begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\1 & 1 & 1 \\1 & -1 & 1\end{vmatrix}\)
The determinant can be expanded as follows:
Therefore, the torque vector is:
\(\mathbf{\tau} = 2\hat{i} + 0\hat{j} - 2\hat{k}\)
The magnitude of the torque in the z-direction is represented by the coefficient of \(\hat{k}\), which is \( |-2| = 2 \).
A square Lamina OABC of length 10 cm is pivoted at \( O \). Forces act at Lamina as shown in figure. If Lamina remains stationary, then the magnitude of \( F \) is: