Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
In mathematics, a set is a well-defined collection of objects. Sets are named and demonstrated using capital letter. In the set theory, the elements that a set comprises can be any sort of thing: people, numbers, letters of the alphabet, shapes, variables, etc.
Read More: Set Theory
The items existing in a set are commonly known to be either elements or members of a set. The elements of a set are bounded in curly brackets separated by commas.
Read Also: Set Operation
The cardinal number, cardinality, or order of a set indicates the total number of elements in the set.
Read More: Types of Sets