The given condition is \(|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2\).
We know that for any complex number \(z\), \(|z|^2 = z \bar{z}\).
Therefore, we can write the given condition as:
\( (z_1 + z_2)(\overline{z_1 + z_2}) = z_1 \bar{z_1} + z_2 \bar{z_2} \)
\( (z_1 + z_2)(\bar{z_1} + \bar{z_2}) = z_1 \bar{z_1} + z_2 \bar{z_2} \)
Expanding the left side:
\( z_1 \bar{z_1} + z_1 \bar{z_2} + z_2 \bar{z_1} + z_2 \bar{z_2} = z_1 \bar{z_1} + z_2 \bar{z_2} \)
Subtracting \(z_1 \bar{z_1} + z_2 \bar{z_2}\) from both sides:
\( z_1 \bar{z_2} + z_2 \bar{z_1} = 0 \)
We know that for any complex number \(w\), \(w + \bar{w} = 2 \text{Re}(w)\).
Let \(w = z_1 \bar{z_2}\). Then \(\bar{w} = \overline{z_1 \bar{z_2}} = \bar{z_1} z_2\).
So, \( z_1 \bar{z_2} + z_2 \bar{z_1} = 2 \text{Re}(z_1 \bar{z_2}) = 0 \)
This implies \( \text{Re}(z_1 \bar{z_2}) = 0 \).
Now, let's consider the options. We need to express this in terms of \( \frac{z_1}{z_2} \).
We can write \( z_1 \bar{z_2} \) as \( z_1 \bar{z_2} = \frac{z_1 \bar{z_2}}{|z_2|^2} |z_2|^2 = \frac{z_1}{z_2} |z_2|^2 \).
So, \( \text{Re}\left(\frac{z_1}{z_2} |z_2|^2\right) = 0 \).
Since \( |z_2|^2 \) is a real non-zero number (as \(z_2\) is a non-zero complex number), we can divide by it.
Therefore, \( |z_2|^2 \text{Re}\left(\frac{z_1}{z_2}\right) = 0 \)
This implies \( \text{Re}\left(\frac{z_1}{z_2}\right) = 0 \).
Alternatively, let \(z_1 = x_1 + i y_1\) and \(z_2 = x_2 + i y_2\).
\( |z_1 + z_2|^2 = (x_1+x_2)^2 + (y_1+y_2)^2 = x_1^2 + 2x_1x_2 + x_2^2 + y_1^2 + 2y_1y_2 + y_2^2 \)
\( |z_1|^2 + |z_2|^2 = x_1^2 + y_1^2 + x_2^2 + y_2^2 \)
Given \(|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2\), we have:
\( x_1^2 + 2x_1x_2 + x_2^2 + y_1^2 + 2y_1y_2 + y_2^2 = x_1^2 + y_1^2 + x_2^2 + y_2^2 \)
This simplifies to:
\( 2x_1x_2 + 2y_1y_2 = 0 \)
\( x_1x_2 + y_1y_2 = 0 \)
Now let's look at \( \frac{z_1}{z_2} \):
\( \frac{z_1}{z_2} = \frac{x_1 + i y_1}{x_2 + i y_2} = \frac{(x_1 + i y_1)(x_2 - i y_2)}{(x_2 + i y_2)(x_2 - i y_2)} = \frac{x_1x_2 - i x_1y_2 + i y_1x_2 + y_1y_2}{x_2^2 + y_2^2} \)
\( \frac{z_1}{z_2} = \frac{(x_1x_2 + y_1y_2) + i(y_1x_2 - x_1y_2)}{x_2^2 + y_2^2} \)
The real part of \( \frac{z_1}{z_2} \) is \( \text{Re}\left(\frac{z_1}{z_2}\right) = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} \).
Since we found \( x_1x_2 + y_1y_2 = 0 \) and \( x_2^2 + y_2^2 \neq 0 \) (as \(z_2\) is non-zero), we have:
\( \text{Re}\left(\frac{z_1}{z_2}\right) = \frac{0}{x_2^2 + y_2^2} = 0 \).