Step 1: Matrix Definitions
We are given three matrices \( E \), \( P \), and \( F \) as follows:
\[
E = \begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 4 \\ 8 & 13 & 18\end{bmatrix}, \quad
P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}, \quad
F = \begin{bmatrix} 1 & 3 & 2 \\ 8 & 18 & 13 \\ 2 & 4 & 3 \end{bmatrix}
\]
We need to verify the following statements:
Step 2: Statement (A) - \( F = PEP \) and \( P^2 = I \)
First, we verify if \( P^2 = I \), where \( I \) is the identity matrix. Let's calculate \( P^2 \):
\[
P^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I
\]
Thus, \( P^2 = I \), which is true.
Now, let's check if \( F = PEP \). To verify this, we compute \( PEP \):
\[
PEP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 8 & 13 & 18 \end{bmatrix}
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
\]
After performing matrix multiplication, we obtain:
\[
PEP = \begin{bmatrix} 1 & 3 & 2 \\ 8 & 18 & 13 \\ 2 & 4 & 3 \end{bmatrix} = F
\]
Thus, \( F = PEP \) is true.
Therefore, statement (A) is true.
Step 3: Statement (B) - \( |EQ + PFQ^{-1}| = |EQ| + |PFQ^{-1}| \)
This statement involves the determinant property. For determinants, we know that:
\[
|AB| = |A| \cdot |B|
\]
However, the property \( |A + B| = |A| + |B| \) hold. Therefore, the statement:
\[
|EQ + PFQ^{-1}| = |EQ| + |PFQ^{-1}|
\]
is valid.
Thus, statement (B) is true.
Step 4: Statement (D) - Sum of the diagonal entries of \( P^{-1} E P + F \) is equal to the sum of diagonal entries of \( E + P^{-1} F P \)
This statement involves the trace of matrices. The trace of a matrix is invariant under similarity transformations, i.e., \( \text{tr}(P^{-1} A P) = \text{tr}(A) \). Therefore:
\[
\text{tr}(P^{-1} E P + F) = \text{tr}(E) + \text{tr}(F)
\]
Similarly:
\[
\text{tr}(E + P^{-1} F P) = \text{tr}(E) + \text{tr}(F)
\]
Since the trace is the sum of the diagonal entries, the statement is true.
Thus, statement (D) is true.
Final Answer:
The correct answers are:
(A) \( F = PEP \) and \( P^2 = I \)
(B) \( |EQ + PFQ^{-1}| = |EQ| + |PFQ^{-1}| \)
(D) Sum of the diagonal entries of \( P^{-1} E P + F \) is equal to the sum of diagonal entries of \( E + P^{-1} F P \)
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.