Step 1: Matrix Definitions
We are given three matrices \( E \), \( P \), and \( F \) as follows:
\[
E = \begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 4 \\ 8 & 13 & 18\end{bmatrix}, \quad
P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}, \quad
F = \begin{bmatrix} 1 & 3 & 2 \\ 8 & 18 & 13 \\ 2 & 4 & 3 \end{bmatrix}
\]
We need to verify the following statements:
Step 2: Statement (A) - \( F = PEP \) and \( P^2 = I \)
First, we verify if \( P^2 = I \), where \( I \) is the identity matrix. Let's calculate \( P^2 \):
\[
P^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I
\]
Thus, \( P^2 = I \), which is true.
Now, let's check if \( F = PEP \). To verify this, we compute \( PEP \):
\[
PEP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 8 & 13 & 18 \end{bmatrix}
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
\]
After performing matrix multiplication, we obtain:
\[
PEP = \begin{bmatrix} 1 & 3 & 2 \\ 8 & 18 & 13 \\ 2 & 4 & 3 \end{bmatrix} = F
\]
Thus, \( F = PEP \) is true.
Therefore, statement (A) is true.
Step 3: Statement (B) - \( |EQ + PFQ^{-1}| = |EQ| + |PFQ^{-1}| \)
This statement involves the determinant property. For determinants, we know that:
\[
|AB| = |A| \cdot |B|
\]
However, the property \( |A + B| = |A| + |B| \) hold. Therefore, the statement:
\[
|EQ + PFQ^{-1}| = |EQ| + |PFQ^{-1}|
\]
is valid.
Thus, statement (B) is true.
Step 4: Statement (D) - Sum of the diagonal entries of \( P^{-1} E P + F \) is equal to the sum of diagonal entries of \( E + P^{-1} F P \)
This statement involves the trace of matrices. The trace of a matrix is invariant under similarity transformations, i.e., \( \text{tr}(P^{-1} A P) = \text{tr}(A) \). Therefore:
\[
\text{tr}(P^{-1} E P + F) = \text{tr}(E) + \text{tr}(F)
\]
Similarly:
\[
\text{tr}(E + P^{-1} F P) = \text{tr}(E) + \text{tr}(F)
\]
Since the trace is the sum of the diagonal entries, the statement is true.
Thus, statement (D) is true.
Final Answer:
The correct answers are:
(A) \( F = PEP \) and \( P^2 = I \)
(B) \( |EQ + PFQ^{-1}| = |EQ| + |PFQ^{-1}| \)
(D) Sum of the diagonal entries of \( P^{-1} E P + F \) is equal to the sum of diagonal entries of \( E + P^{-1} F P \)
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.
