\( \frac{2}{3} \)
Step 1: Understanding the Modulation Index
The modulation index (\( m \)) in amplitude modulation (AM) is given by: \[ m = \frac{A_{\max} - A_{\min}}{A_{\max} + A_{\min}} \] where: - \( A_{\max} \) is the maximum amplitude, - \( A_{\min} \) is the minimum amplitude.
Step 2: Substituting Given Values
Given: \[ A_{\max} = 10 V, \quad A_{\min} = 2 V \] \[ m = \frac{10 - 2}{10 + 2} \] \[ = \frac{8}{12} \] \[ = \frac{2}{3} \]
Step 3: Verify the Correct Answer
Thus, the modulation index is \( \frac{2}{3} \), which corresponds to Option (4).
Sliding contact of a potentiometer is in the middle of the potentiometer wire having resistance \( R_p = 1 \, \Omega \) as shown in the figure. An external resistance of \( R_e = 2 \, \Omega \) is connected via the sliding contact.
The current \( i \) is :
Given the function:
\[ f(x) = \frac{2x - 3}{3x - 2} \]
and if \( f_n(x) = (f \circ f \circ \ldots \circ f)(x) \) is applied \( n \) times, find \( f_{32}(x) \).
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).
If the real-valued function
\[ f(x) = \sin^{-1}(x^2 - 1) - 3\log_3(3^x - 2) \]is not defined for all \( x \in (-\infty, a] \cup (b, \infty) \), then what is \( 3^a + b^2 \)?