Question:

For all real values of \(x\), the minimum value of \(\frac{1-x+x^{2}}{1+x+x^{2}}\) is  

Updated On: Sep 16, 2023
  • 0

  • 1

  • 3

  • \(\frac{1}{3}\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

\(Let ƒ(x)=\frac{1-x+x^{2}}{1+x+x^{2}.}\) 

\(∴ƒ'(x)=\frac{(1+x+x^{2})(-1+2x)-(1-x+x^{2})(1+2x)}{(1+x+x^{2})^{2}}\)

\(=\frac{-1+2x-x+2x^{2}-x^{2}+2x^{3}-1-2x+x+2x^{2}-x^{2}-2x^{3}}{(1+x+x^{2})^{2}}\)

\(=\frac{2x^{2}-2}{(1+x+x^{2})^{2}}=\frac{2(x^{2}-1)}{(1+x+x^{2})^{2}}\)

\(∴ƒ'(x)=0⇒x^{2}=1⇒x=\pm1\)

Now\(,ƒ''(x)=\frac{2[(1+x+x^{2})^{2}(2x)-(x^{2}-1)(2)(1+x+x^{2})(1+2x)]}{(1+x+x^{2})^{4}}\)

\(=\frac{4(1+x+x^{2})[(1+x+x^{2})x-(x^{2}-1)(1+2x)]}{(1+x+x^{2})^{4}}\)

\(=\frac{4[x+x^{2}+x^{3}-x^{2}-2x^{3}+1+2x]}{(1+x+x^{2})^{3}}\)

\(=\frac{4(1+3x-x^{3})}{(1+x+x^{2})^{3}}\)

And,\(ƒ''(1)=\frac{4(1+3-1)}{(1+1+1)^{3}}=\frac{4(3)}{(3)^{3}}=\frac{4}{9}>0\)

Also,\(ƒ''(-1)=\frac{4(1-3+1)}{(1-1+3)^{3}}=4(-1)=-4<0\)

⧠ By second derivative test,f is the minimum at \( x=1\) and the minimum value is given

by\( ƒ(1)=\frac{1-1+1}{1+1+1}=\frac{1}{3}\)

The correct answer is D.

Was this answer helpful?
0
0