For all real values of \(x\), the minimum value of \(\frac{1-x+x^{2}}{1+x+x^{2}}\) is
0
1
3
\(\frac{1}{3}\)
\(Let ƒ(x)=\frac{1-x+x^{2}}{1+x+x^{2}.}\)
\(∴ƒ'(x)=\frac{(1+x+x^{2})(-1+2x)-(1-x+x^{2})(1+2x)}{(1+x+x^{2})^{2}}\)
\(=\frac{-1+2x-x+2x^{2}-x^{2}+2x^{3}-1-2x+x+2x^{2}-x^{2}-2x^{3}}{(1+x+x^{2})^{2}}\)
\(=\frac{2x^{2}-2}{(1+x+x^{2})^{2}}=\frac{2(x^{2}-1)}{(1+x+x^{2})^{2}}\)
\(∴ƒ'(x)=0⇒x^{2}=1⇒x=\pm1\)
Now\(,ƒ''(x)=\frac{2[(1+x+x^{2})^{2}(2x)-(x^{2}-1)(2)(1+x+x^{2})(1+2x)]}{(1+x+x^{2})^{4}}\)
\(=\frac{4(1+x+x^{2})[(1+x+x^{2})x-(x^{2}-1)(1+2x)]}{(1+x+x^{2})^{4}}\)
\(=\frac{4[x+x^{2}+x^{3}-x^{2}-2x^{3}+1+2x]}{(1+x+x^{2})^{3}}\)
\(=\frac{4(1+3x-x^{3})}{(1+x+x^{2})^{3}}\)
And,\(ƒ''(1)=\frac{4(1+3-1)}{(1+1+1)^{3}}=\frac{4(3)}{(3)^{3}}=\frac{4}{9}>0\)
Also,\(ƒ''(-1)=\frac{4(1-3+1)}{(1-1+3)^{3}}=4(-1)=-4<0\)
⧠ By second derivative test,f is the minimum at \( x=1\) and the minimum value is given
by\( ƒ(1)=\frac{1-1+1}{1+1+1}=\frac{1}{3}\)
The correct answer is D.
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is