To find the solubility product constant (\( K_{sp} \)) for the sparingly soluble salt \( \text{AB}_2 \), we start by understanding its dissociation in water:
\[ \text{AB}_2 (s) \rightleftharpoons \text{A}^{2+} (aq) + 2\text{B}^- (aq) \]
From the dissociation, we can write the expression for the solubility product (\( K_{sp} \)):
\[ K_{sp} = [\text{A}^{2+}] [\text{B}^-]^2 \]
Given:
Substitute these concentrations into the \( K_{sp} \) expression:
\[ K_{sp} = (1.2 \times 10^{-4}) \times (0.24 \times 10^{-3})^2 \]
Calculate \( (0.24 \times 10^{-3})^2 \):
\[ (0.24 \times 10^{-3})^2 = 0.0576 \times 10^{-6} \]
Next, calculate \( K_{sp} \):
\[ K_{sp} = (1.2 \times 10^{-4}) \times (0.0576 \times 10^{-6}) \]
\[ K_{sp} = 6.912 \times 10^{-12} \]
Since the options are generally rounded, the closest given option is:
Thus, the correct answer is \( 6.91 \times 10^{-12} \).
Let the solubility of AB$_2$ be s. The dissociation of AB$_2$ in water is given by:
AB$_2$ $\rightleftharpoons$ A$^{2+}$ + 2B$^−$.
At equilibrium, the concentration of A$^{2+}$ is 1.2 × 10$^{-4}$ M and the concentration of B$^−$ is 0.24 × 10$^{-3}$ M.
The solubility product $K_{sp}$ is given by:
$K_{sp}$ = [A$^{2+}$][B$^−$]$^2$.
Substituting the given values:
$K_{sp}$ = (1.2 × 10$^{-4}$)(0.24 × 10$^{-3}$)$^2$ = 6.91 × 10$^{-12}$.
Hence, the correct answer is (2).
