Let the solubility of AB$_2$ be s. The dissociation of AB$_2$ in water is given by:
AB$_2$ $\rightleftharpoons$ A$^{2+}$ + 2B$^−$.
At equilibrium, the concentration of A$^{2+}$ is 1.2 × 10$^{-4}$ M and the concentration of B$^−$ is 0.24 × 10$^{-3}$ M.
The solubility product $K_{sp}$ is given by:
$K_{sp}$ = [A$^{2+}$][B$^−$]$^2$.
Substituting the given values:
$K_{sp}$ = (1.2 × 10$^{-4}$)(0.24 × 10$^{-3}$)$^2$ = 6.91 × 10$^{-12}$.
Hence, the correct answer is (2).
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.