Question:

For a sparingly soluble salt \( \text{AB}_2 \), the equilibrium concentrations of \( \text{A}^{2+} \) ions and \( \text{B}^- \) ions are \( 1.2 \times 10^{-4} \, \text{M} \) and \( 0.24 \times 10^{-3} \, \text{M} \), respectively. The solubility product of \( \text{AB}_2 \) is:

Updated On: Dec 18, 2024
  • \( 0.069 \times 10^{-12} \)
  • \( 6.91 \times 10^{-12} \)
  • \( 0.276 \times 10^{-12} \)
  • \( 27.65 \times 10^{-12} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Let the solubility of AB$_2$ be s. The dissociation of AB$_2$ in water is given by:
AB$_2$ $\rightleftharpoons$ A$^{2+}$ + 2B$^−$.
At equilibrium, the concentration of A$^{2+}$ is 1.2 × 10$^{-4}$ M and the concentration of B$^−$ is 0.24 × 10$^{-3}$ M.
The solubility product $K_{sp}$ is given by:
$K_{sp}$ = [A$^{2+}$][B$^−$]$^2$.
Substituting the given values:
$K_{sp}$ = (1.2 × 10$^{-4}$)(0.24 × 10$^{-3}$)$^2$ = 6.91 × 10$^{-12}$.
Hence, the correct answer is (2).

Was this answer helpful?
2
0

Top Questions on Method of Preparation of Diazoniun Salts

Questions Asked in JEE Main exam

View More Questions