The solubility product \( K_{\text{sp}} \) for \( \text{Mg(OH)}_2 \) is given as \( 1.0 \times 10^{-11} \). The dissolution equilibrium for \( \text{Mg(OH)}_2 \) is:
\[ \text{Mg(OH)}_2 \rightleftharpoons \text{Mg}^{2+} + 2\text{OH}^- \] The concentration of \( \text{OH}^- \) ions required to precipitate \( \text{Mg(OH)}_2 \) can be found by solving for \( [\text{OH}^-] \) using the equation: \[ K_{\text{sp}} = [\text{Mg}^{2+}][\text{OH}^-]^2 \] Substitute \( [\text{Mg}^{2+}] = 0.1 \, \text{M} \) and \( K_{\text{sp}} = 1.0 \times 10^{-11} \): \[ 1.0 \times 10^{-11} = (0.1)[\text{OH}^-]^2 \] Solving for \( [\text{OH}^-] \): \[ [\text{OH}^-] = \sqrt{\frac{1.0 \times 10^{-11}}{0.1}} = \sqrt{1.0 \times 10^{-10}} = 1.0 \times 10^{-5} \, \text{M} \] The pOH is
given by:
\[ \text{pOH} = -\log[\text{OH}^-] = -\log(1.0 \times 10^{-5}) = 5 \] Thus, the pH is: \[ \text{pH} = 14 - \text{pOH} = 14 - 5 = 9 \]
Calculate the EMF of the Galvanic cell: $ \text{Zn} | \text{Zn}^{2+}(1.0 M) \parallel \text{Cu}^{2+}(0.5 M) | \text{Cu} $ Given: $ E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} $ and $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} $
Find the values of a, b, c, and d for the following redox equation: $ a\text{I}_2 + b\text{NO} + 4\text{H}_2\text{O} = c\text{HNO}_3 + d\text{HI} $
If equilibrium constant for the equation $ A_2 + B_2 \rightleftharpoons 2AB \quad \text{is} \, K_p, $ then find the equilibrium constant for the equation $ AB \rightleftharpoons \frac{1}{2} A_2 + \frac{1}{2} B_2. $