The correct answer is: 25.
For 1 mole at high pressure
P(V-b) = RT
PV-Pb = RT
\(\frac{PV}{RT}\)= 1+\(\frac{Pb}{RT}\)
Z = 1+\(\frac{Pb}{RT}\)
1 = \(\frac{99(b)}{0.083×298}\)
b = \(\frac{0.083 ×298}{99}\)≈0.249≈25×10-2
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
An ideal gas is a theoretical gas composed of a set of randomly-moving point particles that interact only through elastic collisions.
The ideal gas law states that the product of the pressure and the volume of one gram molecule of an ideal gas is equal to the product of the absolute temperature of the gas and the universal gas constant.
PV=nRT
where,
P is the pressure
V is the volume
n is the amount of substance
R is the ideal gas constant
When we use the gas constant R = 8.31 J/K.mol, then we have to plug in the pressure P in the units of pascals Pa, volume in the units of m3 and the temperature T in the units of kelvin K.