Step 1: Given Information
We are given the following conditions:
- The prism has an angle of \( \theta = 60^\circ \).
- The refractive indices of the left and right halves of the prism are \( n_1 \) and \( n_2 \), respectively, where \( n_2 \geq n_1 \).
- The angle of incidence \( i \) is chosen such that the incident light rays will have minimum deviation when \( n_1 = n_2 = n \).
- For the case of unequal refractive indices, \( n_1 = n \) and \( n_2 = n + \Delta n \) (where \( \Delta n \ll n \)), the angle of emergence is \( e = i + \Delta e \).
We are asked to determine which of the following statements is/are correct.
Step 2: Minimum Deviation and Relation between \( \Delta e \) and \( \Delta n \)
At minimum deviation, the incident light ray undergoes the least bending. For a prism with a refractive index \( n_1 = n_2 = n \), the angle of emergence \( e \) and the angle of incidence \( i \) are related by the prism's geometry.
When the refractive indices of the left and right halves are unequal, with \( n_2 = n + \Delta n \), the angle of emergence \( e \) will shift. Specifically, the shift in the angle of emergence, \( \Delta e \), will depend on the change in the refractive index, \( \Delta n \). This change is proportional to \( \Delta n \). Hence, the shift in the angle of emergence is directly proportional to the change in the refractive index.
Therefore, statement (B) is correct: \( \Delta e \) is proportional to \( \Delta n \).
Step 3: Estimating \( \Delta e \) for \( \Delta n = 2.8 \times 10^{-3} \)
We are given that \( \Delta n = 2.8 \times 10^{-3} \). We need to estimate the value of \( \Delta e \), which lies between 2.0 and 3.0 milliradians. The value of \( \Delta e \) is small because \( \Delta n \) is small. The linear relationship between \( \Delta e \) and \( \Delta n \) means that if \( \Delta n = 2.8 \times 10^{-3} \), the value of \( \Delta e \) will indeed lie between 2.0 and 3.0 milliradians.
Therefore, statement (C) is correct: \( \Delta e \) lies between 2.0 and 3.0 milliradians if \( \Delta n = 2.8 \times 10^{-3} \).
Final Answer:
The correct options are:
- (B) \( \Delta e \) is proportional to \( \Delta n \)
- (C) \( \Delta e \) lies between 2.0 and 3.0 milliradians if \( \Delta n = 2.8 \times 10^{-3} \)
A hemispherical vessel is completely filled with a liquid of refractive index \( \mu \). A small coin is kept at the lowest point \( O \) of the vessel as shown in the figure. The minimum value of the refractive index of the liquid so that a person can see the coin from point \( E \) (at the level of the vessel) is:
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.