Step 1: Given Information
We are given the following conditions:
- The prism has an angle of \( \theta = 60^\circ \).
- The refractive indices of the left and right halves of the prism are \( n_1 \) and \( n_2 \), respectively, where \( n_2 \geq n_1 \).
- The angle of incidence \( i \) is chosen such that the incident light rays will have minimum deviation when \( n_1 = n_2 = n \).
- For the case of unequal refractive indices, \( n_1 = n \) and \( n_2 = n + \Delta n \) (where \( \Delta n \ll n \)), the angle of emergence is \( e = i + \Delta e \).
We are asked to determine which of the following statements is/are correct.
Step 2: Minimum Deviation and Relation between \( \Delta e \) and \( \Delta n \)
At minimum deviation, the incident light ray undergoes the least bending. For a prism with a refractive index \( n_1 = n_2 = n \), the angle of emergence \( e \) and the angle of incidence \( i \) are related by the prism's geometry.
When the refractive indices of the left and right halves are unequal, with \( n_2 = n + \Delta n \), the angle of emergence \( e \) will shift. Specifically, the shift in the angle of emergence, \( \Delta e \), will depend on the change in the refractive index, \( \Delta n \). This change is proportional to \( \Delta n \). Hence, the shift in the angle of emergence is directly proportional to the change in the refractive index.
Therefore, statement (B) is correct: \( \Delta e \) is proportional to \( \Delta n \).
Step 3: Estimating \( \Delta e \) for \( \Delta n = 2.8 \times 10^{-3} \)
We are given that \( \Delta n = 2.8 \times 10^{-3} \). We need to estimate the value of \( \Delta e \), which lies between 2.0 and 3.0 milliradians. The value of \( \Delta e \) is small because \( \Delta n \) is small. The linear relationship between \( \Delta e \) and \( \Delta n \) means that if \( \Delta n = 2.8 \times 10^{-3} \), the value of \( \Delta e \) will indeed lie between 2.0 and 3.0 milliradians.
Therefore, statement (C) is correct: \( \Delta e \) lies between 2.0 and 3.0 milliradians if \( \Delta n = 2.8 \times 10^{-3} \).
Final Answer:
The correct options are:
- (B) \( \Delta e \) is proportional to \( \Delta n \)
- (C) \( \Delta e \) lies between 2.0 and 3.0 milliradians if \( \Delta n = 2.8 \times 10^{-3} \)
A transparent block A having refractive index $ \mu_2 = 1.25 $ is surrounded by another medium of refractive index $ \mu_1 = 1.0 $ as shown in figure. A light ray is incident on the flat face of the block with incident angle $ \theta $ as shown in figure. What is the maximum value of $ \theta $ for which light suffers total internal reflection at the top surface of the block ?
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): An electron in a certain region of uniform magnetic field is moving with constant velocity in a straight line path.
Reason (R): The magnetic field in that region is along the direction of velocity of the electron.
In the light of the above statements, choose the correct answer from the options given below:
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.