As per ideal gas equation, \(V=\frac{nR}{P}T\)
\(⇒\) Slope of \(V-T\) graph is inversely proportional to \(P\).
As \(m_2 > m_1 ⇒ P_1 > P_2\)
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
An ideal gas is a theoretical gas composed of a set of randomly-moving point particles that interact only through elastic collisions.
The ideal gas law states that the product of the pressure and the volume of one gram molecule of an ideal gas is equal to the product of the absolute temperature of the gas and the universal gas constant.
PV=nRT
where,
P is the pressure
V is the volume
n is the amount of substance
R is the ideal gas constant
When we use the gas constant R = 8.31 J/K.mol, then we have to plug in the pressure P in the units of pascals Pa, volume in the units of m3 and the temperature T in the units of kelvin K.