
Step 1: Find the collector current (\( I_C \)). The collector current (\( I_C \)) is determined by: \[ I_C = \frac{V_{CC}}{R_C}, \] where: - \( V_{CC} = 1 \, \text{V} \), - \( R_C = 1 \, \text{k}\Omega = 1000 \, \Omega \). Substitute the values: \[ I_C = \frac{1}{1000} = 1 \, \text{mA}. \]
Step 2: Relate base current (\( I_B \)) and collector current (\( I_C \)). The current gain (\( \beta \)) of the transistor is given by: \[ \beta = \frac{I_C}{I_B}. \] Rearrange to solve for \( I_B \): \[ I_B = \frac{I_C}{\beta}. \] Substitute \( I_C = 1 \, \text{mA} = 10^{-3} \, \text{A} \) and \( \beta = 100 \): \[ I_B = \frac{10^{-3}}{100} = 10 \, \mu \text{A}. \]
Final Answer: The base current is: \[ \boxed{I_B = 10 \, \mu \text{A}}. \]
0.01 mole of an organic compound (X) containing 10% hydrogen, on complete combustion, produced 0.9 g H₂O. Molar mass of (X) is ___________g mol\(^{-1}\).
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: