Question:

For a cylindrical sample of cross-sectional area $ A $, length $ L $, Young’s modulus $ E $ and axial load $ P $, the strain energy stored is

Show Hint

Strain energy formula for axial load in a cylindrical sample.
Updated On: June 02, 2025
  • \( \frac{P^2 L}{2 A E} \)
  • \( \frac{P L^2}{2 A E} \)
  • \( \frac{P^2 L}{A E} \)
  • \( \frac{P^2 L}{A E} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Strain energy stored \( U = \frac{1}{2} \times \text{Stress} \times \text{Strain} \times \text{Volume} \) Stress \( = \frac{P}{A} \), Strain \( = \frac{P}{A E} \times L \) Hence, \[ U = \frac{1}{2} \times \frac{P}{A} \times \frac{P L}{A E} \times A L = \frac{P^2 L}{2 A E} \]
Was this answer helpful?
0
0

TS PGECET Notification