Step 1: Understanding the problem.
We are asked to find the distance between the center of mass of the system and particle A. The center of mass of a system of particles is given by the weighted average of the coordinates of the particles:
\[
x_{\text{cm}} = \frac{\sum m_i x_i}{\sum m_i}, \quad y_{\text{cm}} = \frac{\sum m_i y_i}{\sum m_i}
\]
Where \( m_i \) and \( (x_i, y_i) \) are the mass and coordinates of the \( i \)-th particle, respectively.
Step 2: Assigning coordinates and masses.
- Particle A: \( m_A = 100 \, \text{g}, \, (x_A, y_A) = (0, 0) \)
- Particle B: \( m_B = 200 \, \text{g}, \, (x_B, y_B) = (2, 0) \)
- Particle C: \( m_C = 300 \, \text{g}, \, (x_C, y_C) = (1, \sqrt{3}) \) (since the height of an equilateral triangle with side length 2 m is \( \sqrt{3} \))
Step 3: Calculating the center of mass coordinates.
First, calculate \( x_{\text{cm}} \) and \( y_{\text{cm}} \):
\[
x_{\text{cm}} = \frac{100(0) + 200(2) + 300(1)}{100 + 200 + 300} = \frac{600 + 300}{600} = \frac{900}{600} = 1.5
\]
\[
y_{\text{cm}} = \frac{100(0) + 200(0) + 300(\sqrt{3})}{100 + 200 + 300} = \frac{300\sqrt{3}}{600} = 0.5\sqrt{3} \approx 0.866
\]
Step 4: Calculating the distance from A to the center of mass.
The distance \( d \) from particle A to the center of mass is given by the distance formula:
\[
d = \sqrt{(x_{\text{cm}} - x_A)^2 + (y_{\text{cm}} - y_A)^2}
\]
Substituting the values:
\[
d = \sqrt{(1.5 - 0)^2 + (0.866 - 0)^2} = \sqrt{(1.5)^2 + (0.866)^2} = \sqrt{2.25 + 0.749} = \sqrt{2.999} \approx 1.73 \, \text{m}
\]
Final Answer:
\[
\boxed{1.73 \, \text{m}}
\]