Step-by-step Calculation:
The standard Gibbs free energy change \( \Delta G^\circ \) for a reaction is related to the equilibrium constant \( K \) by the equation:
\[\Delta G^\circ = -RT \ln K\]
where:
\( R = 8.314 \, \text{J K}^{-1} \text{mol}^{-1} \) (Universal gas constant)
\( T = 300 \, \text{K} \)
\( K = 10 \)
Substituting the values into the equation:
\[\Delta G^\circ = -8.314 \times 300 \times \ln(10)\]
We know that \( \ln(10) \approx 2.303 \).
Therefore:
\[\Delta G^\circ = -8.314 \times 300 \times 2.303\]
\[\Delta G^\circ = -8.314 \times 690.9 \approx -5730 \, \text{J mol}^{-1}\]
Converting to \( \text{kJ mol}^{-1} \):
\[\Delta G^\circ = -5.73 \, \text{kJ mol}^{-1}\]
Expressing in the required format:
\[\Delta G^\circ = -57 \times 10^{-1} \, \text{kJ mol}^{-1}\]
Conclusion: The value of \( \Delta G^\circ \) for the reaction is \( -57 \times 10^{-1} \, \text{kJ mol}^{-1} \).
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____