Step-by-step Calculation:
The standard Gibbs free energy change \( \Delta G^\circ \) for a reaction is related to the equilibrium constant \( K \) by the equation:
\[\Delta G^\circ = -RT \ln K\]
where:
\( R = 8.314 \, \text{J K}^{-1} \text{mol}^{-1} \) (Universal gas constant)
\( T = 300 \, \text{K} \)
\( K = 10 \)
Substituting the values into the equation:
\[\Delta G^\circ = -8.314 \times 300 \times \ln(10)\]
We know that \( \ln(10) \approx 2.303 \).
Therefore:
\[\Delta G^\circ = -8.314 \times 300 \times 2.303\]
\[\Delta G^\circ = -8.314 \times 690.9 \approx -5730 \, \text{J mol}^{-1}\]
Converting to \( \text{kJ mol}^{-1} \):
\[\Delta G^\circ = -5.73 \, \text{kJ mol}^{-1}\]
Expressing in the required format:
\[\Delta G^\circ = -57 \times 10^{-1} \, \text{kJ mol}^{-1}\]
Conclusion: The value of \( \Delta G^\circ \) for the reaction is \( -57 \times 10^{-1} \, \text{kJ mol}^{-1} \).
Match List - I with List - II.
Consider the following statements:
(A) Availability is generally conserved.
(B) Availability can neither be negative nor positive.
(C) Availability is the maximum theoretical work obtainable.
(D) Availability can be destroyed in irreversibility's.
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: