Question:

For \(-1\le x\le1\), if f (x) is the sum of the convergent power series \(x+\frac{x^2}{2^2}+\frac{x^3}{3^2}+...+\frac{x^n}{n^2}+...\) then \(f(\frac{1}{2})\) is equal to

Updated On: Oct 1, 2024
  • \(\displaystyle\int\limits^{\frac{1}{2}}_{0}\frac{In(1-t)}{t}dt.\)
  • \(-\displaystyle\int\limits^{\frac{1}{2}}_{0}\frac{In(1-t)}{t}dt.\)
  • \(\displaystyle\int\limits^{\frac{1}{2}}_{0}tIn(1+t)dt.\)
  • \(\displaystyle\int\limits^{\frac{1}{2}}_{0}tIn(1-t)dt.\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The correct option is (B): \(-\displaystyle\int\limits^{\frac{1}{2}}_{0}\frac{In(1-t)}{t}dt.\)
Was this answer helpful?
0
0

Top Questions on Integral Calculus

View More Questions