\(\frac{\pi}{6}\)
\(\frac{5\pi}{12}\)
\(\frac{\pi}{3}\)
\(\frac{\pi}{4}\)
For the hyperbola, the eccentricity is given by:
\[ e_h = \sqrt{1 + \sin^2 \theta} \]
For the ellipse, the eccentricity is given by:
\[ e_e = \sqrt{1 - \sin^2 \theta} \]
We are given that the eccentricity of the hyperbola is \(\sqrt{7}\) times the eccentricity of the ellipse:
\[ e_h = \sqrt{7} \cdot e_e \]
Substituting the expressions for \(e_h\) and \(e_e\):
\[ \sqrt{1 + \sin^2 \theta} = \sqrt{7} \cdot \sqrt{1 - \sin^2 \theta} \]
Squaring both sides:
\[ 1 + \sin^2 \theta = 7(1 - \sin^2 \theta) \]
Expanding:
\[ 1 + \sin^2 \theta = 7 - 7 \sin^2 \theta \]
Simplifying:
\[ 1 + \sin^2 \theta + 7 \sin^2 \theta = 7 \]
\[ 8 \sin^2 \theta = 6 \]
\[ \sin^2 \theta = \frac{3}{4} \]
Thus:
\[ \sin \theta = \frac{\sqrt{3}}{2} \]
Therefore:
\[ \theta = \frac{\pi}{3} \]
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)