Following figure shows spectrum of an ideal black body at four different temperatures The number of correct statement/s from the following is ________
[A.] \(T_4 > T_3 > T_2 > T_1\)
[B.] The black body consists of particles performing simple harmonic motion.
[C.] The peak of the spectrum shifts to shorter wavelengths as temperature increases.
[D.] \(\frac{T_1}{\nu_1} = \frac{T_2}{\nu_2} = \frac{T_3}{\nu_3} \neq \text{constant}.\)
[E.] The given spectrum could be explained using quantization of energy.
Wien’s Displacement Law:} \(\lambda_{\text{max}} \propto \frac{1}{T}\).
Blackbody radiation follows Planck’s quantization of energy: \(E = h\nu\).
Statement A: Incorrect. From the graph, the temperatures are ordered as \(T_4 > T_3 > T_2 > T_1\), since higher temperature corresponds to higher energy distribution.
Statement B: Incorrect. Blackbody radiation is not associated with simple harmonic motion; it arises from quantized energy emissions.
Statement C: Correct. According to Wien’s Displacement Law, as temperature increases, the peak of the spectrum shifts to shorter wavelengths (higher energy).
Statement D: Incorrect. The temperature ratio does not directly correspond to the velocity ratio in this context.
Statement E: Correct. Blackbody radiation is explained by Planck’s quantization of energy.
Thus, the correct statements are (C) and (E).
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
The scientific study of matter’s properties and behaviour is known as chemistry. It is a natural science that studies the elements that makeup matter, as well as the compounds, made up of atoms, molecules, and ions: their composition, structure, qualities, and behaviour, as well as the changes that occur when they mix with other things.