Step 1: Using the lens formula for the convex lens:
\[
\frac{1}{f} = \frac{1}{v} - \frac{1}{u}
\]
\[
\frac{1}{10} = \frac{1}{v} - \frac{1}{-20}
\]
\[
\frac{1}{v} = \frac{1}{10} + \frac{1}{20} = \frac{3}{20}
\]
\[
v = \frac{20}{3} \approx 6.67 \text{ cm}
\]
Step 2: The image acts as an object for the concave lens. Using the lens formula again:
\[
\frac{1}{-10} = \frac{1}{v'} - \frac{1}{30 - 6.67}
\]
\[
\frac{1}{-10} = \frac{1}{v'} - \frac{1}{23.33}
\]
\[
v' = -17.5 \text{ cm}
\]
\[
\boxed{\text{Image distance } = 17.5 \text{ cm behind concave lens.}}
\]
Step 3: For combined lenses in contact, the effective power is:
\[
P_{\text{total}} = P_1 + P_2
\]
\[
= \frac{100}{10} + \frac{100}{-10}
\]
\[
= 10 - 10 = 0 \, \text{D}
\]
\[
\boxed{\text{Total power } = 0 \text{ D (acts like a plane glass).}}
\]