We have \(\begin{bmatrix} x &-5&-1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1 \\2&1&3 \end{bmatrix}\)\(\begin{bmatrix} x \\ 4\\1 \end{bmatrix}=O\)
⇒ \(\begin{bmatrix} x+0-2 &0-10+-0 &2x-5-3\end{bmatrix}\) \(\begin{bmatrix} x \\ 4\\1 \end{bmatrix}=O\)
⇒ \(\begin{bmatrix} x-2 &-10&2x-8 \end{bmatrix}\) \(\begin{bmatrix} x \\ 4\\1 \end{bmatrix}=O\)
⇒ \(\begin{bmatrix} x(x-2) -40+2x-8 \end{bmatrix}=0\)
⇒ \(\begin{bmatrix} x^2 -2x-40+2x-8 \end{bmatrix}=[0]\)
⇒ \(\begin{bmatrix} x^2 -48 \end{bmatrix}=[0]\)
⇒\(\therefore x^2=48\)
⇒ \(x= 4 \sqrt3\)
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
परसेवा का आनंद — 120 शब्दों में रचनात्मक लेख लिखिए:
Answer the following questions:
[(i)] Explain the structure of a mature embryo sac of a typical flowering plant.
[(ii)] How is triple fusion achieved in these plants?
OR
[(i)] Describe the changes in the ovary and the uterus as induced by the changes in the level of pituitary and ovarian hormones during menstrual cycle in a human female.