We have \(\begin{bmatrix} x &-5&-1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1 \\2&1&3 \end{bmatrix}\)\(\begin{bmatrix} x \\ 4\\1 \end{bmatrix}=O\)
⇒ \(\begin{bmatrix} x+0-2 &0-10+-0 &2x-5-3\end{bmatrix}\) \(\begin{bmatrix} x \\ 4\\1 \end{bmatrix}=O\)
⇒ \(\begin{bmatrix} x-2 &-10&2x-8 \end{bmatrix}\) \(\begin{bmatrix} x \\ 4\\1 \end{bmatrix}=O\)
⇒ \(\begin{bmatrix} x(x-2) -40+2x-8 \end{bmatrix}=0\)
⇒ \(\begin{bmatrix} x^2 -2x-40+2x-8 \end{bmatrix}=[0]\)
⇒ \(\begin{bmatrix} x^2 -48 \end{bmatrix}=[0]\)
⇒\(\therefore x^2=48\)
⇒ \(x= 4 \sqrt3\)
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: